

General Description

The MAX3673 is a low-jitter frequency synthesizer that accepts two reference clock inputs and generates nine phase-aligned outputs. The device features 40kHz jitter transfer bandwidth, 0.3ps_{RMS} (12kHz to 20MHz) integrated phase jitter, and best-in-class power-supply noise rejection (PSNR), making it ideal for jitter cleanup, frequency translation, and clock distribution in wireless base-station applications.

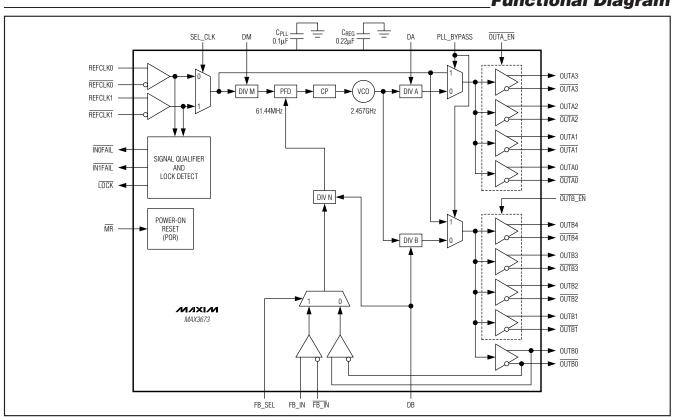
The MAX3673 operates from a single +3.3V supply and typically consumes 400mW. The IC is available in an 8mm x 8mm, 56-pin TQFN package, and operates from -40°C to +85°C.

Applications

3G Wireless Base Stations Frequency Translation Jitter Cleanup Clock Distribution

Pin Configuration and Typical Application Circuits appear at end of data sheet.

Features


- Two Reference Clock Inputs: LVPECL
- ♦ Nine Phase-Aligned Clock Outputs: LVPECL
- ♦ Input Frequencies: 61.44MHz,122.88MHz, 245.76MHz, 307.2MHz
- ♦ Output Frequencies: 61.44MHz, 122.88MHz, 153.6MHz, 245.76MHz, 307.2MHz
- ◆ Low-Jitter Generation: 0.3ps_{RMS} (12kHz to 20MHz)
- **♦ Clock Failure Indicator for Both Reference Clocks**
- **♦ External Feedback Provides Zero-Delay Capability**
- ♦ Low Output Skew: 20ps Typical

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3673ETN+	-40°C to +85°C	56 TQFN-EP*

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Functional Diagram

Maxim Integrated Products

^{*}EP = Exposed pad.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range (VCC, VCC_VCO)0.3V to +4.0V	
LVPECL Output Current (OUTA[3:0],	
OUTA[3:0], OUTB[4:0], OUTB[4:0])56mA	
All Other Pins0.3V to (V _{CC} + 0.3V)	

Continuous Power Dissipation (T _A = +70°C)	
56-Pin TQFN (derate 47.6mW/°C above 70°C)	3808mW
Operating Junction Temperature (T _J)55°C	to +150°C
Storage Temperature Range65°C	to +160°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0 V \text{ to } +3.6 V, T_A = -40 ^{\circ} C \text{ to } +85 ^{\circ} C, C_{PLL} = 0.1 \mu F, C_{REG} = 0.22 \mu F.$ Typical values are at $V_{CC} = +3.3 V, T_A = +25 ^{\circ} C,$ unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	Icc	LVPECL outputs unterminated		120	175	mA
POWER-ON RESET						
V _{CC} Rising		(Note 1)		2.55		V
V _{CC} Falling		(Note 1)		2.45		V
LVCMOS/LVTTL INPUTS (MR, SE	L_CLK, PLL	_BYPASS, FB_SEL)				
Input High Voltage	VIH		2.0			V
Input Low Voltage	VIL				0.8	V
Input High Current	lін	V _{IN} = V _{CC}			75	μΑ
Input Low Current	I _{IL}	V _{IN} = GND	-75			μΑ
LVCMOS/LVTTL OUTPUTS (IN0F	AIL, IN1FAIL	, LOCK)				
Output High Voltage	Voh	I _{OH} = -8mA	2.4			V
Output Low Voltage	V _{OL}	$I_{OL} = +8mA$			0.4	V
LVPECL INPUTS (REFCLKO, REF	CLKO, REFO	CLK1, REFCLK1, FB_IN, FB_IN) (Note 2)				
Input High Voltage	VIH				V _{CC} - 0.7	V
Input Low Voltage	VIL		V _{CC} - 2.0			V
Input Bias Voltage	Vсмі		V _{CC} - 1.8	V _{CC} - 1.34		V
Differential-Input Swing			0.15		1.9	V _{P-P}
Differential-Input Impedance				> 40		kΩ
Common-Mode Input Impedance				> 14		kΩ
Input Capacitance				1.5		рF
Input Current		$V_{IH} = V_{CC} - 0.7V, V_{IL} = V_{CC} - 2.0V$	-100		+100	μΑ
Input Inrush Current When Power is Off (Steady State)	IDC	(Notes 3, 4)		8		mA
Input Inrush Current Overshoot When Power is Off	lovershoot	(Notes 3, 4)		6		mA

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C}, C_{PLL} = 0.1 \mu\text{F}, C_{REG} = 0.22 \mu\text{F}. Typical values are at } V_{CC} = +3.3 \text{V}, T_A = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.})$

Reference Clock Frequency Tolerance Reference Clock Duty Cycle Reference Clock Amplitude Potential Swing (Notes 5, 6) 200 Mode of the Potential Swing (Notes 5, 6) 200 Mode of the Potential Swing (Notes 5, 6) 200 Mode of the Potential Swing (Notes 5, 6) 200 Mode of the Potential Swing (Notes 5, 6) 200 Mode of the Potential Swing (Notes 5, 6) 200 Mode of the Potential Swing (Notes 5, 6) 200 Mode of the Potential Swing (Notes 5, 6) 200 Mode of the Potential Swing (Notes 5, 6) 200 Mode of the Potential Swing (Notes 6, 6) 200 Mode of the Potential Swing (Notes 7) VCC - V	PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Reference Clock Frequency Tolerance Reference Clock Duty Cycle Reference Clock Duty Cycle Reference Clock Amplitude VDT Differential swing (Notes 5, 6) 200 m/V M/V M/V M/V M/V Differential swing (Notes 5, 6) 200 m/V M/	REFERENCE CLOCK INPUTS (REFCLK0, REFCLK1, REFCLK1)					•	
Tolerance	Reference Clock Frequency	fREF			Table 1		MHz
Reference Clock Amplitude Detection Assert Threshold VDT Differential swing (Notes 5, 6) 200 mVN	, , ,			-200		+200	ppm
Detection Assert Threshold VDT Differential Swing (Notes 5, 6) 200 mVg	Reference Clock Duty Cycle			40		60	%
Output High Voltage VOH VCC 1.13 0.98 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.8		V _{DT}	Differential swing (Notes 5, 6)		200		mV _{P-P}
Dutput Low Voltage	LVPECL OUTPUTS (OUTA[3:0], (OUTA[3:0], OU	ITB[4:0], OUTB[4:0]) (Note 7)	•			
Differential-Output Swing 1.85 1.70 1.55 1.80 1.70 1.55 1.80 1.70 1.55 1.80 1.70 1.55 1.80 1.70 1.55 1.80 1.70 1.55 1.80 1.70 1.55 1.80 1.70 1.50 1.80	Output High Voltage	V _{OH}		1			V
Output Current When Disabled Vo = VcC - 2.0V to VcC - 0.7V 130 µ/I Output Frequency fout Tables 2, 3 MH Output Rise/Fall Time ts, tr 20% to 80% (Note 8) 150 500 ps Output Duty Cycle PLL_BYPASS = 0 PL_BYPASS = 1 (Note 9) 45 55 % Output-to-Output Skew tskew Within output bank 20 Put All outputs 20 ps All outputs 40 H MH OTHER AC ELECTRICAL SPECIFICATIONS PLL Jitter Transfer Bandwidth 40 KH Jitter Peaking 0.1 df PFD Compare Frequency 61.44 MH VCO Center Frequency 2.457 GF Random Jitter Generation Integrated 12kHz to 20MHz (Notes 5, 8) 0.3 1.0 ps Deterministic Jitter Caused by Power-Supply Noise (Note 10) 5 ps Frequency Difference Between Reference Clock and VCO at Which the PLL is Considered on Lock 800 pp	Output Low Voltage	VoL		1			V
Output Frequency fout Tables 2, 3 MH Output Rise/Fall Time t _R , t _F 20% to 80% (Note 8) 150 500 pt Output Duty Cycle PLL_BYPASS = 0 48 52 % PLL_BYPASS = 1 (Note 9) 45 55 % Output-to-Output Skew Within output bank 20 ps All outputs 40 Within output bank 20 ps PLL_Jitter Transfer Bandwidth 40 kH MI Jitter Peaking 0.1 df df PFD Compare Frequency 61.44 MH VCO Center Frequency 2.457 GF Random Jitter Generation Integrated 12kHz to 20MHz (Notes 5, 8) 0.3 1.0 ps Determinisitic Jitter Caused by Power-Supply Noise (Note 10) 5 ps Frequency Difference Between Reference Clock and VCO Within Which the PLL is Considered on Lock 800 pp Frequency Difference Between Reference Clock and VCO at Which the PLL is Considered Out-of-Lock 800 pp	Differential-Output Swing			1.1	1.45	1.8	V _{P-P}
Output Rise/Fall Time t _R , t _F 20% to 80% (Note 8) 150 500 pst	Output Current When Disabled		$V_{O} = V_{CC} - 2.0V \text{ to } V_{CC} - 0.7V$			130	μΑ
Output Duty Cycle PLL_BYPASS = 0	Output Frequency	fout					MHz
Output-to-Output Skew SKEW Within output bank 20	Output Rise/Fall Time	t _R , t _F	20% to 80% (Note 8)	150		500	ps
Output-to-Output Skew Take Output-to-Output Skew Take Output-Supput Skew Take Output Skew Take	Outrant Duty Ovala		PLL_BYPASS = 0	48		52	0/
Other AC ELECTRICAL SPECIFICATIONS PLL Jitter Transfer Bandwidth Jitter Peaking PFD Compare Frequency VCO Center Frequency Note 10) Prequency Difference Between Reference Clock and VCO at Which the PLL is Considered Out-of-Lock All outputs 40 kH 40 kH 40 kH 40 kH Mr 61.44 Mr 61	Output Duty Cycle		PLL_BYPASS = 1 (Note 9)	45		55	70
OTHER AC ELECTRICAL SPECIFICATIONS PLL Jitter Transfer Bandwidth Jitter Peaking PFD Compare Frequency VCO Center Frequency Random Jitter Generation Determinisitic Jitter Caused by Power-Supply Noise Frequency Difference Between Reference Clock and VCO Within Which the PLL is Considered in Lock Frequency Difference Between Reference Clock and VCO at Which the PLL is Considered Out-of-Lock All outputs 40 kH 40 kH 40 kH 40 kH MI VCO Center Frequency 61.44 MI Note 10 59 (Note 10) 5 psr 500 pp Power-Supply Noise Frequency Difference Between Reference Clock and VCO Within Which the PLL is Considered Out-of-Lock Pp 800 pp	Output-to-Output Skew	tokew	Within output bank		20		ne
PLL Jitter Transfer Bandwidth Jitter Peaking PFD Compare Frequency CO Center Frequency Random Jitter Generation Determinisitic Jitter Caused by Power-Supply Noise Frequency Difference Between Reference Clock and VCO Within Which the PLL is Considered in Lock Frequency Difference Between Reference Clock and VCO at Which the PLL is Considered Out-of-Lock KH 40 kH 40 kH 40 kH 61.44 MI- Considered 12kHz to 20MHz (Notes 5, 8) 0.3 1.0 psr (Note 10) 5 psr 800 pp	Output to Output onew	ISKEW	All outputs		40		ρs
Jitter Peaking PFD Compare Frequency 61.44 MH VCO Center Frequency Random Jitter Generation Integrated 12kHz to 20MHz (Notes 5, 8) Determinisitic Jitter Caused by Power-Supply Noise Frequency Difference Between Reference Clock and VCO Within Which the PLL is Considered in Lock Frequency Difference Between Reference Clock and VCO at Which the PLL is Considered Out-of-Lock 9.1 Out-of-Lock Ou	OTHER AC ELECTRICAL SPECI	FICATIONS					
PFD Compare Frequency VCO Center Frequency Random Jitter Generation Determinisitic Jitter Caused by Power-Supply Noise Frequency Difference Between Reference Clock and VCO Within Which the PLL is Considered in Lock Frequency Difference Between Reference Clock and VCO at Which the PLL is Considered Out-of-Lock MI- MI- MI- MI- MI- MI- MI- MI	PLL Jitter Transfer Bandwidth				40		kHz
VCO Center Frequency Random Jitter Generation Integrated 12kHz to 20MHz (Notes 5, 8) Determinisitic Jitter Caused by Power-Supply Noise Frequency Difference Between Reference Clock and VCO Within Which the PLL is Considered in Lock Frequency Difference Between Reference Clock and VCO at Which the PLL is Considered Out-of-Lock Programme 2.457 GH Random Jitter Generation Integrated 12kHz to 20MHz (Notes 5, 8) O.3 1.0 psr pp pp pp pp pp pp	Jitter Peaking				0.1		dB
Random Jitter Generation Determinisitic Jitter Caused by Power-Supply Noise Frequency Difference Between Reference Clock and VCO Within Which the PLL is Considered in Lock Frequency Difference Between Reference Clock and VCO Within Which the PLL is Considered in Lock Frequency Difference Between Reference Clock and VCO at Which the PLL is Considered Out-of-Lock Property Difference Between Reference Clock and VCO at Which the PLL is Considered Out-of-Lock	PFD Compare Frequency				61.44		MHz
Determinisitic Jitter Caused by Power-Supply Noise Frequency Difference Between Reference Clock and VCO Within Which the PLL is Considered in Lock Frequency Difference Between Reference Clock and VCO at Which the PLL is Considered Out-of-Lock [Note 10] [Note 1	VCO Center Frequency				2.457		GHz
Power-Supply Noise Frequency Difference Between Reference Clock and VCO Within Which the PLL is Considered in Lock Frequency Difference Between Reference Clock and VCO at Which the PLL is Considered Out-of-Lock (Note 10) 5 psf 800 pp	Random Jitter Generation		Integrated 12kHz to 20MHz (Notes 5, 8)		0.3	1.0	psRMS
Reference Clock and VCO Within Which the PLL is Considered in Lock Frequency Difference Between Reference Clock and VCO at Which the PLL is Considered Out-of-Lock 500 pp			(Note 10)		5		psp-p
Reference Clock and VCO at Which the PLL is Considered Out-of-Lock 800 pp	Reference Clock and VCO Within Which the PLL is				500		ppm
PLL Lock Time t _{LOCK} Figure 2 600 us	Reference Clock and VCO at Which the PLL is Considered				800		ppm
1 ==== 1 1 1 1 1 1 1 1 1	PLL Lock Time	tLOCK	Figure 2		600		μs

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +3.0 \text{V to } +3.6 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, C_{PLL} = 0.1 \mu\text{F}, C_{REG} = 0.22 \mu\text{F}. Typical values are at V}_{CC} = +3.3 \text{V}, T_A = +25 ^{\circ}\text{C}, unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Master Reset (MR) Minimum Pulse Width				100		ns
Propagation Delay from Input to FB_IN		FB_SEL = 1 (Notes 8, 11)	-120		+120	ps
Propagation Delay from Input to Any Output		PLL_BYPASS = 1		1.0		ns

- Note 1: During the power-on-reset time, the LVPECL outputs are held to logic-low (OUTxx = low, OUTxx = high). See the *Power-On-Reset (POR)* section for more information.
- Note 2: LVPECL inputs can be AC- or DC-coupled.
- **Note 3:** For hot-pluggable purposes, the device can receive LVPECL inputs when no supply voltage is applied. Measured with V_{CC} pins connected to GND. See Figure 1.
- Note 4: Measured with LVPECL input (VIH, VIL) as specified.
- Note 5: Measured using reference clock input with 550ps rise/fall time (20% to 80%).
- Note 6: When input differential swing is below the specified threshold, a clock failure is declared. See Figure 4.
- **Note 7:** LVPECL outputs terminated 50Ω to $V_{TT} = V_{CC} 2V$.
- Note 8: Guaranteed by design and characterization.
- Note 9: Measured with 50% duty cycle at reference clock input.
- **Note 10:** Measured with 50mV_{P-P} sinusoidal noise on the power supply, f_{NOISE} = 100kHz.
- **Note 11:** Measured with f_{REFCLKx} = f_{FB} IN and matched slew rates.

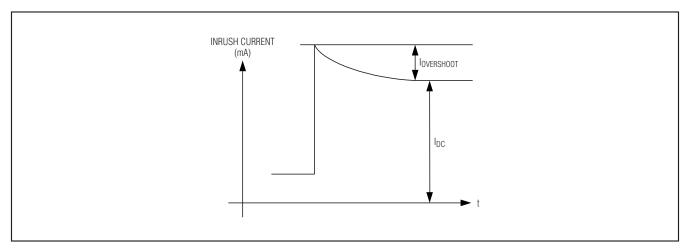


Figure 1. LVPECL Input Inrush Current

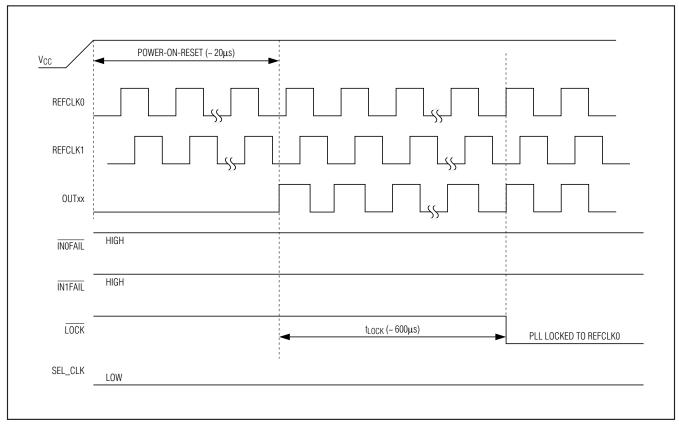
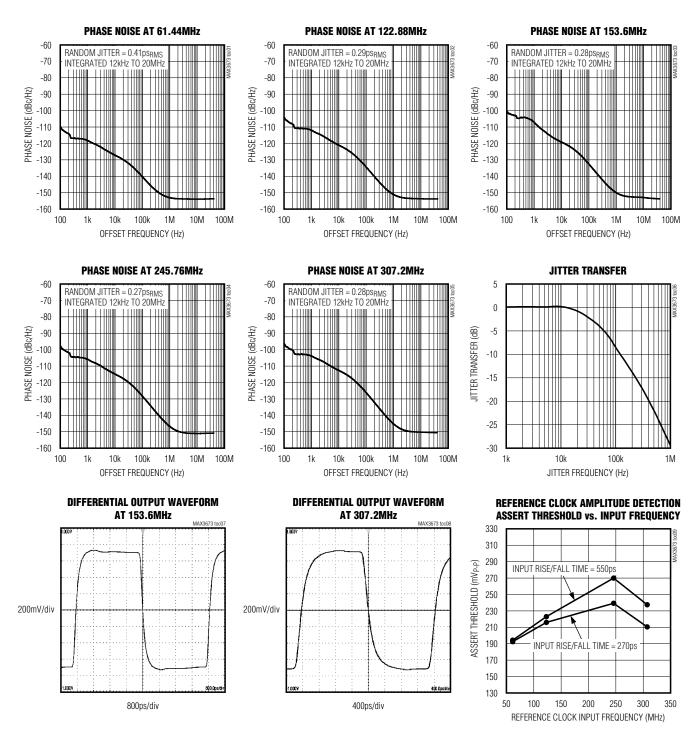
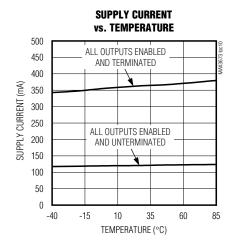
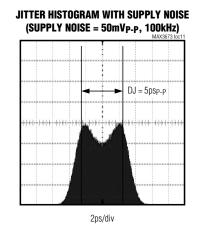
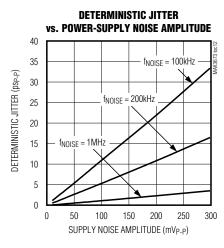
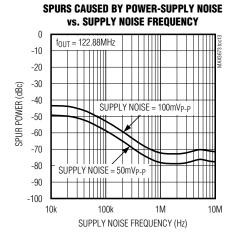



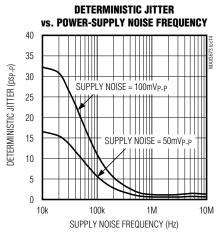
Figure 2. Power-Up, PLL Locks to REFCLK0

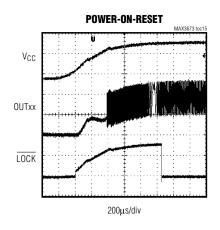

Typical Operating Characteristics

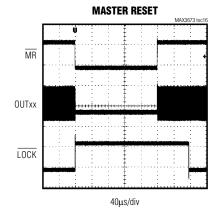

 $(V_{CC} = 3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$

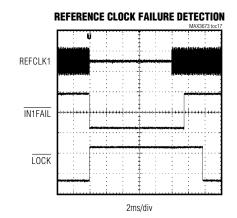



Typical Operating Characteristics (continued)


($V_{CC} = 3.3V$, $T_A = +25$ °C, unless otherwise noted.)







Pin Description

PIN	NAME	FUNCTION
1	INOFAIL	REFCLK0 Failure Indicator, LVCMOS/LVTTL Output. Low indicates REFCLK0 fails the clock qualification. Once a failed clock is detected, the indicator status is latched and updated every 128 PFD cycles (~ 2µs).
2	RSVD1	Reserved. Leave pin open.
3	RSVD2	Reserved. Connect to GND.
4	REFCLK0	Reference Clock Input 0, Differential LVPECL
5	REFCLK0	Thereference Glock input of billerential EVI EGE
6	DM	Four-Level Control Input for Reference Clock Input Divider. See Table 1.
7, 22, 30, 41, 49, 52	Vcc	Power Supply. Connect to +3.3V.
8, 14, 23, 29, 42, 48, 53	GND	Supply Ground
9	MR	Master Reset, LVCMOS/LVTTL Input. Connect this pin high or leave open for normal operation. Has internal $90k\Omega$ pullup to V_{CC} . Connect low to reset the device. A reset is not required at power-up. If the output divider settings are changed on the fly, a reset is required to phase align the outputs. This input has a 100ns minimum pulse width and is asynchronous to the reference clock. While in reset, all clock outputs are held to logic-low. See Table 6.
10	REFCLK1	Patarana Clask land to Differential LVPFO
11	REFCLK1	Reference Clock Input 1, Differential LVPECL
12	SEL_CLK	Reference Clock Select, LVCMOS/LVTTL Input. Connect low or leave open to select REFCLK0 as the reference clock. Has internal $90k\Omega$ pulldown to GND. Connect high to select REFCLK1 as the reference clock.
13	VCC_VCO	Power Supply for VCO. Connect to +3.3V.
15	CPLL	Connection for PLL Filter Capacitor. Connect a 0.1µF capacitor between this pin and GND.
16	CREG	Connection for VCO Regulator Capacitor. Connect a 0.22µF capacitor between this pin and GND.
17	FB_SEL	External Feedback Select, LVCMOS/LVTTL Input. Connect high to select external feedback for zero-delay buffer configuration. Connect low or leave open for internal feedback. Has internal $90k\Omega$ pulldown to GND.
18	FB_IN	External Feedback Clock Input, Differential LVPECL. Used for zero-delay buffer
19	FB_IN	configuration.
20	OUTB0	Clock Output BO Differential LVPECI
21	OUTB0	Clock Output B0, Differential LVPECL
24	OUTB1	Clock Output B1, Differential LVPECL
25	OUTB1	Olock Output B1, Dilletential EvreoL
26	OUTB2	Clock Output B2, Differential LVPECL
27	OUTB2	Olook Output DZ, Dillelelitial EVI EOE
28	DB	Four-Level Control Input for B-Group Output Divider. See Table 3.
31	OUTB3	Clock Output B3 Differential LVPECI
32	OUTB3	Clock Output B3, Differential LVPECL
33	OUTB4	Clock Output B4, Differential LVPECL
34	OUTB4	Olock Output B4, Dilletential EvreoL
35	OUTB_EN	Three-Level Control Input for B-Group Output Enable. See Table 5.
36	OUTA_EN	Three-Level Control Input for A-Group Output Enable. See Table 4.

Pin Description (continued)

PIN	NAME	FUNCTION
37	OUTA3	Clock Output A2 Differential LVDFCI
38	OUTA3	Clock Output A3, Differential LVPECL
39	OUTA2	Clock Output A2, Differential LVPECL
40	OUTA2	Glock Output Az, Differential EVPECE
43	DA	Four-Level Control Input for A-Group Output Divider. See Table 2.
44	OUTA1	Clock Output A1, Differential LVPECL
45	OUTA1	Clock Output A1, Dillerential EVFECE
46	OUTA0	Clock Output A0, Differential LVPECL
47	OUTA0	Glock Output Ao, Differential EVI ECE
50	PLL_BYPASS	PLL Bypass Control, LVCMOS/LVTTL Input. Connect low or open for normal operation. Has internal $90k\Omega$ pulldown to GND. Connect high to bypass the PLL, connecting the selected reference clock directly to the clock outputs. In this mode, the clock qualification function is not valid. To reduce spurious jitter in bypass mode, the internal VCO should be disabled by shorting the CREG pin to GND.
51	RSVD3	Reserved. Connect to V _{CC} .
54	RSVD4	Reserved. Leave pin open.
55	LOCK	PLL Lock Indicator, LVCMOS/LVTTL Output. Low indicates PLL is locked.
56	ĪN1FAIL	REFCLK1 Failure Indicator, LVCMOS/LVTTL Output. Low indicates REFCLK1 fails the clock qualification. Once a failed clock is detected, the indicator status is latched and updated every 128 PFD cycles (~ 2µs).
_	EP	Exposed Pad. Connect to supply ground for proper electrical and thermal performance.

Detailed Description

The MAX3673 integrates two differential LVPECL reference inputs with a 2:1 mux, a PLL with configurable dividers, nine differential LVPECL clock outputs, and a selectable external feedback input for zero-delay buffer applications (see the *Functional Diagram*).

The two reference clock inputs are continuously monitored for clock failure by the internal PLL and associated logic. If the primary clock fails, the user can switch over to the secondary clock using the 2:1 mux.

The PLL accepts reference input frequencies of 61.44, 122.88, 245.76, or 307.2MHz and generates output frequencies of 61.44, 122.88, 153.6, 245.76, or 307.2MHz. The nine clock outputs are organized into two groups (A and B). Each group has a configurable frequency divider and output-enable control.

Phase-Locked Loop (PLL)

The PLL contains a phase-frequency detector (PFD), charge pump (CP) with a lowpass filter, and voltage-controlled oscillator (VCO). The PFD compares the

divided reference frequency to the divided VCO output at 61.44MHz, and generates a control signal to keep the VCO phase and frequency locked to the selected reference clock. Using a high-frequency VCO (2.457GHz) and low-loop bandwidth (40kHz), the MAX3673 attenuates reference clock jitter while maintaining lock and generates low-jitter clock outputs at multiple frequencies. Typical jitter generation is 0.3psrms (integrated 12kHz to 20MHz).

To minimize supply noise-induced jitter, the VCO supply (VCC_VCO) is isolated from the core logic and output buffer supplies. Additionally, the MAX3673 uses an internal low-dropout (LDO) regulator to attenuate noise from the power supply. This allows the device to achieve excellent power-supply noise rejection, significantly reducing the impact on jitter generation.

Clock Failure Conditions

The MAX3673 clock failure detection is performed using the combination of amplitude qualification and PLL frequency and phase-error qualification. The failure status is indicated for REFCLK0 and REFCLK1 at

INOFAIL and IN1FAIL, respectively. Once an indicator is asserted low, it is latched and updated every 128 PFD cycles (~ 2µs).

It should be noted that when the PLL is locked to a reference clock, the clock failure indicator for the other reference clock is only valid for amplitude qualification and frequency qualification.

Amplitude Qualification

A reference clock input fails amplitude qualification if any of the following conditions occur:

- Either one or both inputs (REFCLKx, REFCLKx) are shorted to V_{CC} or GND.
- Both inputs (REFCLKx, REFCLKx) are disconnected from the source and have 130Ω to V_{CC} and 82Ω to GND at each input. See Figure 3.
- Input reference clock differential swing is below the clock failure assert threshold as specified in the Electrical Characteristics. See Figure 4.

The response time for these conditions is typically between 50ns and 300ns.

Phase Qualification

A reference clock input fails phase qualification when the phase error at the PFD output exceeds the error window (0.75ns typical) for more than five of eight PFD cycles. A reference clock input is qualified when phase error at the PFD output is within the phase-error window for eight consecutive PFD cycles. Note that phase qualification only applies to the reference input currently being used by the PLL.

Frequency Qualification

A reference clock input becomes frequency qualified if the input frequency is within $\pm 2.4\%$ of the nominal frequency. The reference input becomes frequency disqualified if the input frequency moves away from the nominal frequency by more than $\pm 8\%$.

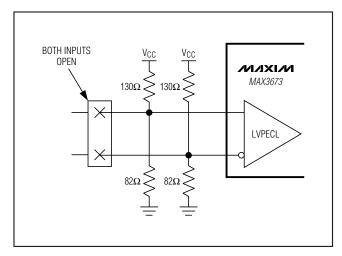


Figure 3. Positions for Open-Circuit Detection

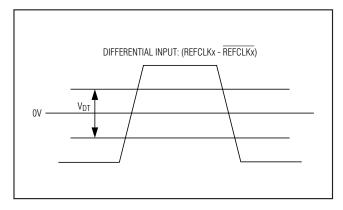


Figure 4. Input Amplitude Detection Threshold

Table 1. Divider M Configuration for Input Frequencies

CONNECTION FROM DM PIN	INPUT FREQUENCY (MHz)
GND	61.44
Vcc	122.88
Open	245.76
10kΩ to GND	307.2

Table 2. Divider A Configuration for A-Group Output Frequencies

CONNECTION FROM DA PIN	OUTPUT FREQUENCY AT OUTA[3:0] (MHz)
GND	61.44
Vcc	122.88
Open	153.6
10kΩ to GND	307.2

Table 3. Divider B Configuration for B-Group Output Frequencies

CONNECTION FROM DB PIN	OUTPUT FREQUENCY AT OUTB[4:0] (MHz)
GND	61.44
Vcc	122.88
Open	245.76
10kΩ to GND	307.2

Table 4. OUTA[3:0] Enable Control

PLL Out-of-Lock Condition

If the frequency difference between the reference clock input and the VCO at the PFD input becomes within 500ppm, the PLL is considered to be in lock ($\overline{\text{LOCK}}$ = 0). When the frequency difference between the reference clock input and the VCO at the PFD input becomes greater than 800ppm, the PLL is considered out-of-lock. It should be noted that the LOCK indicator is not part of the frequency qualification used for the $\overline{\text{INxFAIL}}$ indicators.

Input and Output Frequencies

The MAX3673 input and output dividers are configured using four-level control inputs DM, DA, and DB. Each divider is independent and can have a unique setting. The input connection and associated frequencies are listed in Tables 1, 2, and 3.

Output-Enable Controls

Each <u>output group</u> (<u>A and B</u>) has a three-level control input <u>OUTA_EN</u> and <u>OUTB_EN</u>. See Tables 4 and 5 for configuration settings. When clock outputs are disabled, they are high impedance. Unused enabled outputs should be left open.

Power-On-Reset (POR)

At power-on, an internal signal is generated to hold the MAX3673 in a reset state. This internal reset time is about 20µs after V_{CC} reaches 3.0V (Figure 2). During the POR time, the outputs are held to logic-low (OUTxx = low and OUTxx = high). See Table 6 for output signal status during POR. After this internal reset time, the PLL starts to lock to the reference clock selected by SEL_CLK.

CONNECTION FROM OUTA_EN PIN	A-GROUP OUTPUT ENABLED	A-GROUP OUTPUT DISABLED TO HIGH IMPEDANCE
GND	OUTA0, OUTA1, OUTA2, OUTA3	_
V _{CC} *	_	OUTA0, OUTA1, OUTA2, OUTA3
Open	OUTA0, OUTA1	OUTA2, OUTA3

^{*}Connecting both $\overline{OUTA_EN}$ and $\overline{OUTB_EN}$ to V_{CC} enables a factory test mode and forces all indicators to GND. This is not a valid mode of operation.

Table 5. OUTB[4:0] Enable Control

CONNECTION FROM OUTB_EN PIN	B-GROUP OUTPUT ENABLED	B-GROUP OUTPUT DISABLED TO HIGH IMPEDANCE
GND	OUTB0, OUTB1, OUTB2, OUTB3, OUTB4	_
V _{CC} *	OUTB0	OUTB1, OUTB2, OUTB3, OUTB4
Open	OUTB0, OUTB1, OUTB2	OUTB3, OUTB4

^{*}Connecting both $\overline{OUTA_EN}$ and $\overline{OUTB_EN}$ to V_{CC} enables a factory test mode and forces all indicators to GND. This is not a valid mode of operation.

Master Reset

After power-up, an external master reset (\overline{MR}) can be provided to reset the internal dividers. This input requires a minimum reset pulse width of 100ns (active low) and is asynchronous to the reference clock. While \overline{MR} is low, all clock outputs are held to logic-low (OUTxx = low, \overline{OUTxx} = high). See Table 6 for the output signal status during master reset. When the master reset input is deasserted $\overline{(MR)}$ = 1), the PLL starts to lock to the reference clock selected by SEL_CLK.

Master reset is only needed for applications where divider configurations are changed on the fly and the clock outputs need to maintain phase alignment. A master reset is not required at power-up.

External Feedback for Zero-Delay Buffer

The MAX3673 can be operated with either internal or external PLL feedback path, controlled by the FB_SEL input. Connecting FB_SEL to GND selects internal feedback. For applications where a known phase relationship between the reference clock input and the external feedback input (FB_IN, FB_IN) are needed for phase synchronization, connect FB_SEL to VCC for zero-delay buffer configuration and provide external feedback to the FB_IN input.

PLL Bypass Mode

PLL bypass mode is provided for test purposes. In PLL bypass mode (PLL_BYPASS = 1), the selected reference clock is connected to the LVPECL clock outputs directly. The output clock frequency is the same as the input clock frequency and the clock qualification function is not valid. To reduce spurious jitter in bypass mode, the internal VCO should be disabled by shorting the CREG pin to GND.

Applications Information

Interfacing with LVPECL Inputs

Figure 5 shows the equivalent LVPECL input circuit for REFCLK0, REFCLK1, and FB_IN. These inputs are internally biased to allow AC- or DC-coupling and have > $40 k\Omega$ differential input impedance. When AC-coupled, these inputs can accept LVDS, CML, and LVPECL signals. Unused reference clock inputs should be left open.

Interfacing with LVPECL Outputs

Figure 6 shows the equivalent LVPECL output circuit. These outputs are designed to drive a pair of 50Ω transmission lines terminated with 50Ω to $V_{TT} = V_{CC} - 2V$. If a separate termination voltage (V_{TT}) is not available, other termination methods can be used such as those shown in Figures 7 and 8. Unused outputs, enabled or disabled, can be left open or properly terminated. For more information on LVPECL terminations and how to interface with other logic families, refer to Application Note 291: HFAN-01.0: Introduction to LVDS, PECL, and CML.

Layout Considerations

The clock inputs and outputs are critical paths for the MAX3673, and care should be taken to minimize discontinuities on the transmission lines. Maintain 100Ω differential (or 50Ω single-ended) impedance in and out of the MAX3673. Avoid using vias and sharp corners. Termination networks should be placed as close as possible to receiving clock inputs. Provide space between differential output pairs to reduce crosstalk, especially if the A and B group outputs are operating at different frequencies.

Table 6. Output Signal Status During Power-On-Reset or Master Reset

OUTPUT	DURING POWER-ON-RESET (FOR \sim 20 μ s AFTER V _{CC} $>$ 3.0V) DURING MASTER RESET (MR = 0)	NOTES
INOFAIL	1	Forced high regardless of reference input qualification.
ĪN1FAIL	1	Forced high regardless of reference input qualification.
LOCK	1	PLL out-of-lock.
OUTA[3:0]	Logic-Low	_
OUTB[4:0]	Logic-Low	_

Power Supply and Ground Connections

The MAX3673 has seven supply connection pins; installation of a bypass capacitor at each supply pin is recommended. All seven supply connections should be driven from the same source to eliminate the possibility of independent power-supply sequencing. Excessive supply noise can result in increased jitter.

The 56-pin TQFN package features an exposed pad (EP), which provides a low-resistance thermal path for heat removal from the IC and must be connected to the circuit board ground plane for proper operation.

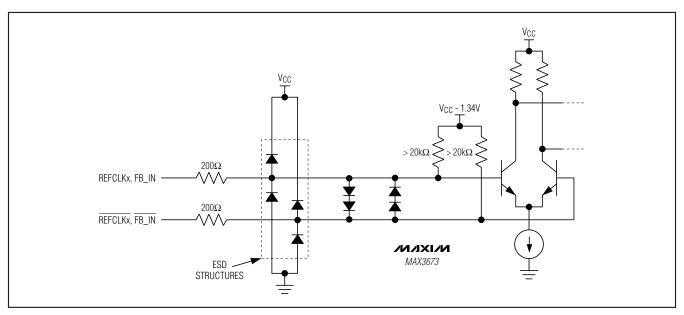


Figure 5. Equivalent LVPECL Input Circuit

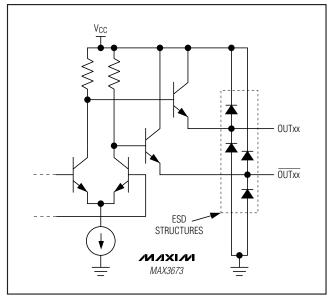


Figure 6. Equivalent LVPECL Output Circuit

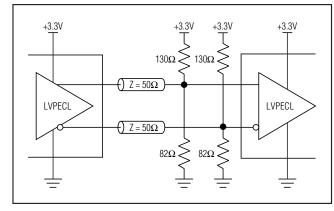


Figure 7. Thevenin Equivalent LVPECL Termination

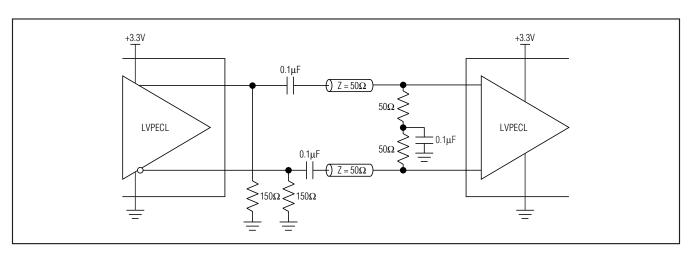
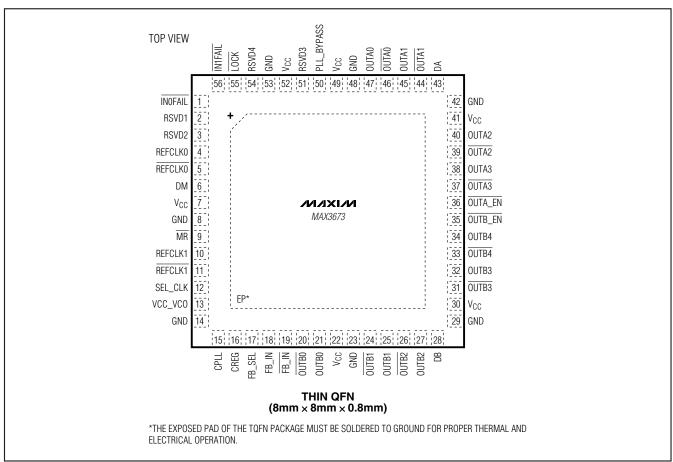
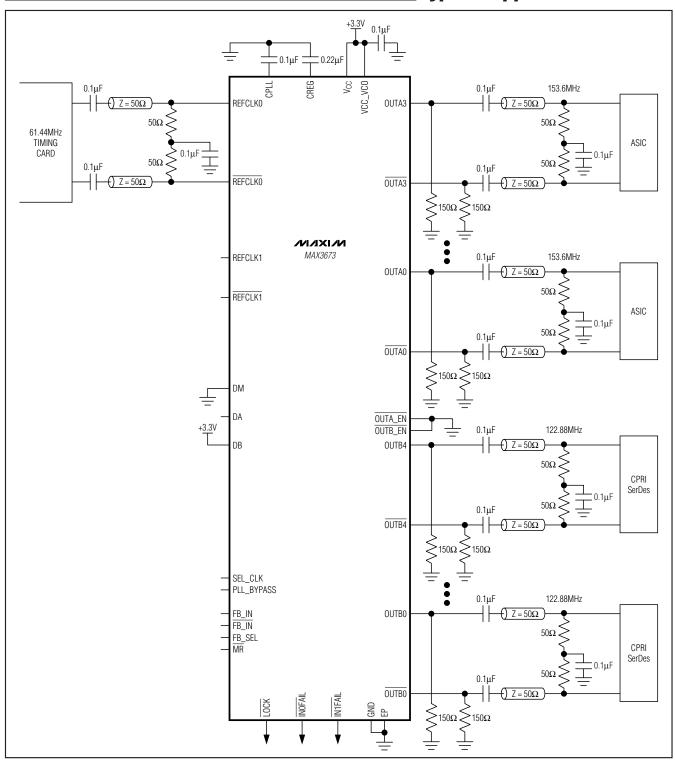
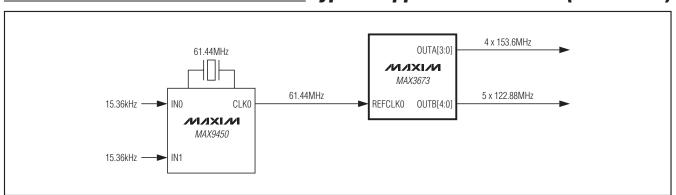




Figure 8. AC-Coupled LVPECL Termination

Pin Configuration


Typical Application Circuits

PROCESS: BICMOS

Low-Jitter Frequency Synthesizer with Selectable Input Reference

Typical Application Circuits (continued)

Chip Information

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
56 TQFN-EP	T5688+3	<u>21-0135</u>

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim is a registered trademark of Maxim Integrated Products, Inc.